FDA Expectations for Toxicology Support of Clinical Trials and Marketing

Tacey E.K. White, PhD Director of Operations and Senior Consultant Nonclinical Toxicology Aclairo Pharmaceutical Development Group, Inc.

Outline

- Relevant ICH Guidelines
- Standard Development Small Molecules
- Cancer Indications
- Biologics CDER
- Biologics and Novel Therapeutics CBER
- Pediatric Indications time permitting

FDA Follows ICH Guidelines

- ICH M3(R2) Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals - Step 4
 - Describes the timing of all nonclinical studies needed to support each phase of clinical development and marketing
- ICH S9 Nonclinical Evaluation for Anticancer Pharmaceuticals
 Describes specific considerations for oncology products
- ICH S6 (R1) Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals - Addendum (R1): Step 4
 - Describes additional considerations for Biologics CDER

Drug Development Phases

IND = Investigational New Drug application – permission to dose people NDA = New Drug Application – permission to market drug BLA = New Biologics Application – permission to market biologic

ACLAIRO pharmaceutical development group, inc.

Standard Duration of Nonclinical Toxicity Studies to Support Clinical Trials (ICH M3(R2))

Max Clinical Trial Duration	Pivotal (Definitive) Toxicology Study Duration	
	Rodents	Non-rodents
≤2 Weeks	2 weeks	2 weeks
2 Weeks to 6 Months	Same as clinical trial	Same as clinical trial
Greater than 6 Months	6 months	9 months (6 in EU)

Toxicity Study Durations Required for Marketing (ICH M3(R2))

Duration of Indicated Treatment	Toxicology Study Duration	
	Rodents	Non-rodents
up to 2 Weeks	1 month	1 month
>2 Weeks to 1 Month	3 months	3 months
> 1 Month to 3 months	6 months	6 months
> 3 months	6 months	9 months (6 in EU)

Nonclinical Toxicology Package Overview

- Evaluate 1 rodent (usually rat) and 1 non-rodent (usually dog) species
 - Should be pharmacologically active (at least one species)
 - Should have some ADME information for each
 - Monkey usually only used after de-selection of dog
- Range Finding Studies:
 - Goal Select doses for definitive studies; usually non-GLP
 - Observe general toxicity, survivability, target organs, and TK (toxicokinetics)
 - Define non-toxic & toxic dosages
 - Ideally define the maximum tolerated dose (MTD)
 - Make sure to push the dose

Definitive/Pivotal General Toxicity Studies

- Goals:
 - Identify toxicities to guide clinical monitoring
 - Identify no-observed-adverse-effect-level (NOAEL)
 - Calculate safety margins relative to intended clinical exposures
 - Set safe starting doses in the clinic
- Study Design:
 - 3 Dose groups and vehicle control
 - Generally half-log spacing of doses (based on TK exposures AUC)
 - N = 10/sex/group for rodents (could be larger for longer studies)
 - N = ~4/sex/group for non-rodents
- Endpoints:

pharmaceutical development group, inc.

- Clinical pathology, ophthalmology, cardiovascular evaluations (non-rodent)
- Terminal necropsy full histopathology
- Recovery groups (Control and HD) on 1 study \geq 4 weeks duration
 - N=5/sex/group rodents; 2/sex/group non-rodents

Selection of High Dose (ICH M3(R2))

- High dose should show toxicity (adversity) in each study should be considered the maximum tolerated dose (MTD)
 - Justify based on results in earlier studies
 - Toxicities may occur at lower doses in longer studies death
 - ex) liver toxicity generally tolerated, doesn't progress use same dose
 - ex) cardiac toxicity could get worse consider lowering the dose
- Other options for low toxicity molecules (e.g., mAbs):
 - Maximum feasible dose e.g., an i.v. formulation at the maximum solubility and dosing volume
 - Large exposure margins over intended clinical (~50-fold AUC)
 - Limit dose of 1000 mg/kg/day
 - Provided at least 10-fold clinical margin and clinical dose of < 1g; other wise limit dose of 2000 mg/kg/day
 - PD Target saturation and fold-multiples biologics (mAbs)

Genotoxicity Studies – ICH S2

- To test for mutagenicity and clastogenicity (strand break) potential
- Generally conduct the following 3 tests:
 - In vitro Ames mutation test in multiple strains of bacteria (+/- metabolic activation)
 - In vitro mouse lymphoma or human lymphocyte (+/- metabolic activation) – genetic damage
 - In vivo mouse micronucleus genetic damage
- Some flexibility in how to conduct can bolt in vivo test onto general toxicity study

Safety Pharmacology – ICH S7A / 7B

- Evaluates physiologic changes related to pharmacology (PD) that could cause acute effects in Ph1 subjects
 - Not conducted at MTD, but mild toxicity at high dose; doses can be in clinical range
 - 3 doses and control; generally single dose administered
- Acute Neurotoxicity (Irwin test) rats
 - Functional observational battery autonomic, sensory/motor, behavior
- Cardiovascular
 - In vivo in non-rodents ecg, QTc prolongation, HR, blood pressure, etc.
 - Small Molecules Latin Squares design all animals get all doses
 - In vitro hERG (human potassium channel), patch-clamp test
- Respiratory
 - Stand-alone in rodent, or bolted on to non-rodent CV study

Developmental and Reproductive Toxicity (DART) (ICH S5)

- Embryo-fetal development (EFD, Seg 2)
 Rodent and non-rodent (usually rabbit)
- Fertility and early embryonic development (FEE, Seg 1)

 Rodent
 - Can run as separate studies in males and females or combined
- Pre-/postnatal development (PPN, Seg 3)
 Rodent

Carcinogenicity Studies – ICH S1

- For chronic indications
- Evaluates potential of drug to cause cancer
- Traditionally 2 separate studies (mouse and rat)
 - Generally need 2-week and 3-month mouse tox studies to support dose selection
 - 2 years duration (life-time dosing)
- Can sometimes replace mouse study with shorter mouse transgenic (hRAS) study
- Start with 20-40/sex/group
- Special statistics needed to evaluate tumor production

Estimating Safe Starting Dose – Phase 1

• *"FDA Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers, July 2005"*

• Submit with IND

- Calculate Human Equivalent Dose (HED) of NOAEL in animals
 - Use mg/m² conversion factor (k_m) to account for body surface area differences
 - For certain drugs (e.g., mAbs) use mg/kg without conversion
 - ex) rat NOAEL = 200 mg/kg/day; HED = 200 / 6.2 rat k_m = 32 mg/kg (~1900 mg)
- First Ph 1 clinical dose should be ~10-fold lower than NOAEL HED
 - Apply a greater safety margin in certain cases (e.g., steep dose-response)
 - ex) start at 1900/10 = 190 mg
 - Dose-escalate to HED of animal NOAEL (ex, 1900 mg)
 - Not generally allowed to go above the HED of the animal NOAEL
- <u>Note</u>: Important to define minimum pharmacologically active dose (mPAD) and exposures in animals and predict human PAD/exposure (AUC)
 ex) If predicted PAD in humans is << NOAEL, dose can be lowered in Ph1

CMC Considerations: Quality of Drug Substance

CMC / Pharmaceutical Quality (new name)

- CMC = Chemistry, Manufacturing, and Controls
- FDA takes quality very seriously! Drug should not contain contaminants that could be toxic impurities, degradants, etc.
- Chemists and CMC Regulatory Affairs specialists should be consulted to comply with quality expectations

ICH Quality Guidelines		
Q1A - Q1F - Stability	Q7 - GMPs	
Q2 – Analytical Validation	Q8 – Pharmaceutical Development	
Q3A - Q3D - Impurities	Q9 – Quality Risk Management	
Q4 – Q4B - Pharmacopoeias	Q10 – Pharmaceutical Quality System	
Q5A – Q5E – Biotech Products	Q11 – Dev/manufacture Drug Substance	
Q6A – Q6B - Specifications	Q12 – Life Cycle Management	
M7(R2) – Mutagenic Impurities		

CMC / Pharmaceutical Quality

- CMC = Chemistry, Manufacturing, and Controls
- FDA takes quality very seriously!
- Chemists and CMC Regulatory Affairs specialists should be consulted to comply with quality expectations

ICH Quality Guidelines		
Q1A - Q1F - Stability	Q7 - GMPs	
Q2 – Analytical Validation	Q8 – Pharmaceutical Development	
Q3A - Q3D - Impurities	Q9 – Quality Risk Management	
Q4 – Q4B - Pharmacopoeias	Q10 – Pharmaceutical Quality System	
Q5A – Q5E – Biotech Products	Q11 – Dev/manufacture Drug Substance	
Q6A – Q6B - Specifications	Q12 – Life Cycle Management	
M7(R2) – Mutagenic Impurities		

CMC for the Toxicologist

- Impurities must be tracked and controlled at specific levels by the time of the NDA – to set manufacturing specifications
 - Impurities = Starting materials, intermediates, degradants, solvents, etc.
- During drug development chemists and toxicologists must work together to ensure that the levels of all contaminants are "qualified" for safety
- ICH M7 potential impurities should be tested with "in silico" methods to predict mutagenic potential (e.g., DEREK, Leadscope)
 - If "in silico" positive must run Ames in vitro genotox test
 - <u>If positive in Ames</u> must control at low levels in clinical trials and in the marketed batch

CMC for the Toxicologist, continued

- ICH Q3A Q3D: Impurities in drug substance, impurities in drug product, residual solvents, and inorganic impurities
- At the time of the NDA all non-mutagenic impurities must be reported, identified, or qualified if they reach certain levels
- Qualified = were present at that level in a toxicology study
- If not qualified level (specification) must be dropped, or a toxicology study done with the impurity

Thresholds from ICH Q3A

Maximum Daily Dose	Reporting Threshold	Identification Threshold	Qualification Threshold
$\leq 2g/day$	0.05%	0.10% or 1.0 mg per day intake (whichever is lower)	0.15% or 1.0 mg per day intake (whichever is lower)
> 2g/day	0.03%	0.05%	0.05%

Example of Impurity Assessments

- Drug X has 3 impurities in the final batch: A, B & C
 - Impurity A is at **0.07%** of the drug substance
 - Impurity B is at 0.11% of the drug substance
 - Impurity C is at **0.3%** of the drug substance
- Impurities B and C must be identified and reported (>0.1%)
- Impurity A must also be reported (>0.5%) use HPLC RT
- Impurity B & C must be evaluated for mutagenicity using "in silico tests"
 - If positive do Ames test
 - If Ames test positive control as a genotoxic impurity (ICH M7)
- Impurity C must be qualified or controlled at 0.15%
 - 1-month toxicity study had 0.5% of Imp C
 - Therefore, Imp C is qualified manufacturing specification can be set at 0.3%

Maximum Daily Dose	Reporting Threshold	Identification Threshold	Qualification Threshold
≤2g/day	0.05%	0.10% or 1.0 mg per day intake (whichever is lower)	0.15% or 1.0 mg per day intake (whichever is lower)
> 2g/day	0.03%	0.05%	0.05%

Oncology Indications – ICH S9

Oncology Indications – ICH S9

- ICH S9: Nonclinical Evaluation for Anticancer Pharmaceuticals, March 2010
- "...for pharmaceuticals that are intended to treat cancer in patients with serious and life threatening malignancies... referred to as patients with advanced cancer."
- Supports trials in patients for whom other treatments have failed
- Phase 1 in patients not healthy volunteers
- Minimal nonclinical work to initiate Ph 1
- Ph 2 can proceed without additional nonclinical studies
- <u>Not</u> for long-term treatments to reduce cancer recurrence (i.e., patient in remission)
 - Full nonclinical program would apply

Standard vs. Oncology Package

Standard

- 1-month Ph1
 Studies up to 6/9
 months for NDA
 - NOAEL required
- Safety Pharm and Genetox needed
- Starting dose based on NOAEL
- Full DART package
- Carcinogenicity studies

Oncology (including Biologics) – S9

- 1-month studies Ph1, Ph2
 3-month studies for Ph3 and NDA
 - No NOAEL required
- Safety pharm "bolted on" to general tox; No gene tox needed
- Starting dose based on 10% of severely toxic dose in animals (STD 10)
 - Dose-escalate above animal NOAEL to MTD in humans
- DART only need EFD study one species only if positive

ACLAIRO (R) pharmaceutical development group, inc.

Biologic Therapies

Types of Biologics –

Molecules found in/made by biological systems

- Monoclonal Antibodies (can inhibit or activate a target)
 - Mouse, chimeric, humanized, whole or fragments, etc.
- Cytokines and Growth Factors
 - Interferons, interleukins, colony stimulating factor
- Hormones
 - Growth hormone, insulin, erythropoietin
- Vaccines
 - Proteins or peptides, DNA plasmids
- Gene and Cell Therapy products
 - Viral and non-viral delivery systems, genetically engineered cells, stem cells
- Blood products
 - Albumin, thrombolytics, fibrinolytics, clotting factors

ACLAIRO From: Cavagnaro (2002) Nature Reviews Drug Discovery, 1:469-475

Types of Biologics

- Monoclonal Antibodies (can inhibit or activate a target)
 - Mouse, chimeric, humanized, whole or fragments, etc.
- Cytokines and Growth Factors
 - Interferons, interleukins, colony stimulating factor
- Hormones
 - Growth hormone, insulin, erythropoietin
- Vaccines
 - Proteins or peptides, DNA plasmids
- Gene and Cell Therapy products
 - Viral and non-viral delivery systems, genetically engineered cells, stem cells
- Blood products
 - Albumin, thrombolytics, fibrinolytics, clotting factors

ACLAIRO[®] From: Cavagnaro (2002) Nature Reviews Drug Discovery, 1:469-475

Differences Between Biologics and Small Molecules

Small Molecules

- Small: < 700 daltons
- Generally lipophilic Can cross biological membranes, including the placenta and/or VYS
- Well defined structures and relatively stable
- Rapidly metabolized; require daily dosing
- Toxic response related to chemical structure and exaggerated pharmacology
- Less likely to illicit an immune response (be immunogenic)
- More likely to have activity in multiple species

Biologics

- Large Macromolecules:
 - Peptides ~ 1,000 to 10,000 dal
 - Proteins ~ 20,000 to 60,000 dal
 - mAbs ~150,000 dal
- Less lipophilic Generally either can't cross membranes or use receptormediated mechanisms
- Complex physiochemical characteristics and heat sensitive
- Degraded over time, can be very long acting; may need intermittent dosing
- Toxic response related to exaggerated pharmacology
- More likely to be immunogenic
- More often show species selectivity

See: Cavagnaro (2002) Nature Reviews Drug Discovery, 1:469-475

Considerations for Selecting an Appropriate Animal Model and Study Design for Biologics

- Pharmacologic Activity
 - Toxicity based on chemical structure is not expected, so a must use pharmacologically relevant species
 - mAbs, cytokines and growth factors, etc. should cross-react with the appropriate target in the animal species
 - The pharmacologic target should have a similar function in the animal
 - Vaccines should elicit an appropriate immune response

Immunogenicity

- Are neutralizing antibodies (NAs) formed?
- Would an immune response be elicited that would significantly impact the health or survival of the animal?

• Toxicokinetics

- If NAs formed, can we still maintain adequate exposure?
- How does TK determine my dosing regimen?

ACLAIRO[®] pharmaceutical development group, inc.

Special Considerations for Biologics – ICH S6(R1)

- Remember: ICH S6 only applies to CDER-regulated biologics
- Toxicity Studies must use pharmacologically relevant species!
 - ICH S6(R1) prefer use of clinical candidate therapeutic
 - Use 2 species if both relevant (rodent and non-rodent)
 - Single species acceptable if only 1 species is relevant (e.g., NHP)
 - Animal homologues acceptable, but must be well characterized (considered a separate molecule) - best used if no other choice
 - Disease models can also be used to evaluate safety low expressing targets (ex Alzheimers only expressed in disease)
- For FTIH studies use 2 relevant species if possible
 - If species responses are the same, a single species can be used for longer studies (preferably rodent, if possible)
- Dosing frequency should be based on PK

Special Considerations for Biologics, cont

- mAbs against non-mammalian targets (bacteria, viruses)
 - One short-term safety study in single species (no reprotox)
 - Alternatively safety endpoints collected in disease model
- Immunogenicity measure anti-drug antibodies (ADA)
 - Used to explain changes in PK or PD or animal toxicity
 - <u>Not</u> good indicator of human responses Predict based on pharmacology
- Tissue Cross-Reactivity Studies
 - Were typically done in animals to predict toxicity or select species
 - Revised ICH S6 not of value in animals, but should be done on a panel of human tissues before Ph 1
 - To find a relevant species pharmacology binding assay with speciesspecific target more useful than tissue cross-reactivity

Special Considerations for Biologics, cont

- Safety Pharmacology some assessment expected, but could be bolted on to general toxicity studies – long half life for mAbs
- Genotoxicity Assessment **not applicable to biologics**
- Carcinogenicity
 - Weight-of-evidence assessment for level of concern should be conducted – pharmacology class, target biology, transgenics, etc.
 - Several immunosuppressive mAbs have cancer risk in humans!
 - If mechanism raises concern (e.g., immunosuppressant, growth factor)
 address with labeling and risk management practices
 - If this is insufficent information, some additional short-term studies may be warranted
 - 2-year animal carc study/transgenic mouse studies not considered warranted/practical
- Reprotox differences described later in talk

Small Molecules vs. CDER Biologics

Small Molecules

- 2 species (rodent/non-rodent)
- In vivo and in vitro safety pharmacology
- Genetox evaluations
- Carcinogenicity studies (chronic indications)
- Safe starting dose based on NOAEL of animal studies; HED based on mg/m² conversion

Biologics (CDER)

- Only pharmacologically relevant species for tox could use 1 species; could use homologues
- No in vitro safety pharm; can bolt on safety pharm to tox study
- No genetox evaluations
- No carcinogenicity studies, but weight of evidence evaluation expected – appropriate labeling
- Safe starting dose based on NOAEL and PAD or MABEL;
- HED based on mg/kg

Biologics - CBER

CBER Office of New Drugs Organizational Chart

CBER Office of New Drugs Organizational Chart

CBER - Office of Tissues & Advanced Therapies

- Formerly Office of Cell, Tissue and Gene Therapies
 - Recently blood cell products moved into this division
- Products covered:
 - Allergenics
 - Blood cells
 - Gene Therapy
 - Human tissues
 - Human Cellular Products
 - Therapeutic vaccines against mammalian targets (ex oncology)
 - Xenotransplantation Products (from animals)
 - Medical devices and tests used to keep blood and cells safe from viruses and other infectious agents

Guidance for Industry on Cells, Tissues and Genes

- Prior to 2013 No FDA Guidance on development of these products
- **BioSafe** preclinical section of **BIO** (Biotechnology Industry Organization)
 - Organized annual F2F meetings with CBER starting in 2008
 - Need for clear guidance on development of CBER products
 - Meetings designed to discuss current issues facing researchers/developers and get CBER input
- The following BioSafe working groups were formed and proposed topics for each meeting:
 - Blood products
 - Gene therapy
 - Cell therapy
 - Vaccines
- Many of the topics discussed have been included in 2013 guidance!

Cell, Gene, Tissue (CGT) Products – Safety Assessment Principles

- Guidance for Industry: *Preclinical Assessment of Investigational Cellular* and Gene Therapy Products, Nov 2013
 - Does not apply to autologous human tissues or cells (put back into the same donor) [see 21 CFR Part 1271]
 - Does not apply to CDER-regulated biologics
- General Principles:
 - Intrinsic properties (materials and mechanisms of action) different from drugs
 - Typical ADME principles may not apply
 - Traditional standardized safety testing for drugs not always applicable
 - CBER uses flexible, science-driven review process
 - Some aspects of ICH S6(R2) can be applied as appropriate
 - Recommendation early and frequent communication with CBER staff
- Pre- Pre-IND meetings welcomed and expected!!

CGT Product Preclinical Study Considerations

- Preclinical objectives Appropriate animal model:
 - Biologic plausibility
 - ID of biologically active doses in animals; and safe doses and dosing regimen for clinical trials
 - Reasonable safety and feasibility of the proposed route of administration
 - Patient eligibility
 - Physiologic parameters guiding clinical monitoring
 - Patient and public safety
- Combining of animal efficacy and safety studies encouraged

CGT Product Preclinical Study Recommendations

- Use **final clinical CGT product and delivery system** in pivotal animal studies where possible
- Animal Model Selection Key Animal species must exhibit the following:
 - Comparable physiology and anatomy to humans
 - Similar infectivity/replication of viral vectors for gene therapy
 - Immune tolerance to CT product or human transgene of GT product
 - Feasibility of clinical delivery procedures
 - <u>Note</u>: non-standard species (e.g., transgenics; unusual species) may be acceptable; could use a combination of species, but not mandatory
 - All these attributes must be **demonstrated in pilot studies** to provide the rationale for species selection
 - Animal surrogate product could be acceptable if no acceptable species
- Disease models may be used for both efficacy and safety assessment in the same study
 - Consider limitations of this approach (limited HC data, variability of model, etc.)
- In vitro studies encouraged where possible to reduce animal use

CGT Product Preclinical Study Recommendations, cont

- **Proof-of-Concept (POC) Studies** confirm: effective dose range; route of administration and dose schedule; putative MOA and biological outcome
 - Combination of in vitro and in vivo studies (disease model) recommended

• Toxicology Studies

- Must use biologically active species
- Use of disease models encouraged vs. traditional healthy animals
 - In addition to or instead of
- Mimic proposed clinical trial as closely as possible same dose route, dosing schedule, delivery system
- Multiple dose levels bracket the clinical dose rely on POC studies
- Multiple sacrifice timings capture acute, chronic, delayed-onset toxicity could be done all in the same study
- Traditional toxicity endpoints clinical exams, BW, FC, clin path, histopath
- Additional parameters specific to CGT product

CGT Product Delivery Systems

- CGT Products often have novel delivery systems **devices**
- Should be identical to the clinical delivery device
- Safety must be established for the delivery device
 - IND submission should state if a Device Master File (MAF) has been submitted to CDRH for the delivery device
 - Note: Sponsor must get permission to reference MAF
 - CBER consults with CDRH to ensure safe use in humans
 - If MAF doesn't exist, CDRH recommends needed information
 - Large animals may be best to evaluate safety of delivery device
 - Published studies may also be referenced

CGT Product – Later Clinical Development

- Additional toxicity studies are not necessarily needed to support longer clinical trials
- Would need to conduct bridging study for the following reasons:
 - Change in manufacturing/formulation of product
 - Change in dosing regimen or patient population
- Reproductive Toxicity not always needed; will depend on product type and/or patient population
- Carcinogenicity/tumorigenicity no 2-year bioassays required
 - Specific recommendations for each type of product see references in Guidance document

Cell Therapy – Specific Recommendations

- Types of CT Products:
 - Stem cell-derived
 - Mature/functionally differentiated
 - Induced pluripotent stem cells have characteristics of both
 - Cell-device combinations, e.g., cells on scaffolding
 - Don't forget biocompatibility assessment of device elements

Cell Therapy – Specific Recommendations

- Safety Concerns:
 - Theoretically more concerns with less differentiated products
 - Do they reach their target? Where else do they go?
 - Do they stay intact, or do they change, differentiate or transform?
 - Integration? Tumorigenicity?
 - Effect of scaffolding on nature of cells
- Study Design Elements:
 - Animal models to overcome immunogenicity with long-term testing
 - May need immunodeficient animals or animal homologue to test requires thorough characterization
 - Need way to identify cells after implantation
 - PCR
 - Imaging helps to follow cells over time in the same animal

Hot Topics in Cell Therapy

1. Immune Responses to Cell Products – Animal Model Selection

- What happens when animal rejects human cells? Cannot test long-term effects may under-predict effects in humans
- Immuno-suppressed or Immuno-compromised animal models may be needed to allow survival of cells for study
- Immuno-compromised models could include:
 - Long-term drug-induced immunosuppressed large animal
 - Pro tolerates human doses of cells and human delivery systems
 - Con difficult to immunosuppress large animals animals susceptible to lymphoma or infection
 - Drug-induced immunosuppressed or immunocompromised rodent healthy or disease models
 - Immune-mediated pathology difficult to assess
- 2. Techniques to distinguish transplanted cells from native cells
 - Quantitative (Q-PCR) vs. qualitative (in situ hybridization)
 - Imaging techniques; gender-specific tissues; GFP genes within viral vectors

Gene Therapy – Specific Recommendations

- Types of GT Products:
 - Non-viral vectors (e.g., plasmids)
 - Replication-deficient vectors (e.g., adenovirus, AAV, retrovirus, lentivirus, etc.)
 - Replication-competent oncolytic vectors (e.g., measles, reovirus, adenovirus, etc.)
 - Microbial vectors (e.g., *Listeria, Salmonella, E. coli*, bacteriophage)
 - Ex vivo genetically modified cells

Gene Therapy – Specific Recommendations

- Animal Models should:
 - Be permissive to the viral vector similarly in animal and human
 - Show the same pharmacologic response to transgene or genetically modified cells
- Safety Concerns:
 - Toxicity to the formulation (e.g., liposomes, excipients)
 - Should be tested separately if a MAF does not exist
 - Aberrant localization to or viral vector replication in non-target cells/tissues
 - Persistence of vector and expressed transgene
 - Immune response to vector; or overall immune suppression or activation
 - Insertional mutagenesis or oncogenicity
 - Germline transmission
 - Transmission to family members or health professionals (shedding)
 - Vector-specific concerns see guidance
 - Transgene-specific safety concerns

ACLAIRO

Gene Therapy – Biodistribution

- Biodistribution characterization considered very important!
 - Does it reach target organs? Where else does it go?
 - Does transgene expression persist? Is it intended to persist?
- Biodistribution study (BDS) is needed before dosing humans for:
 - New vector classes
 - Established vectors (EVs) with significant changes to:
 - Backbone
 - Formulation or route of administration changes
 - Dosing schedule
 - Vector dose levels
- Significant discussions have occurred between sponsors and the FDA about having to repeat BDS with well-characterized vectors (e.g., AAV)
 - Can justify not repeating based on past experience

Gene Therapy – Biodistribution

- Conduct BDS on the molecular level using quantitative PCR (qPCR) in all applicable organs, tissues, biological fluids
 - More limited for local injection
- **Important**: Make sure to use very clean techniques for necropsies (change scalpel between organs) to avoid false positives
- Ensure tissues are collected according to the following guideline:
- BD used information to determine the length of follow-up needed in clinical trials.
 - Guidance for Industry: Gene Therapy Clinical Trials Observing Subjects for Delayed Adverse Events, Nov 2006
 - Multiple necropsy groups to test persistence and distribution across time

GT - Decision Tree for Length of Clinical Follow-up

pharmaceutical development group, inc.

Guidance for Industry: Gene Therapy Clinical Trials – Observing Subjects for Delayed Adverse Events, Nov 2006

Hot Topics Gene Therapy

- Immune Responses against viral gene therapy vectors
 - Clinical trials have shown cellular immune responses with possible adverse responses
 - <u>Example</u> AAV delivery of Factor IX for hemophilia B*
 - Long-term hemophilia correction in mouse and dog; but F.IX antibodies
 - Human: IM no safety issues, but transgene expression low
 - IV (hepatic artery) good transgene expression at 2 weeks
 - But Subsequent rise of liver transaminases (toxicity) and reduction of transgene
 - Likely T-cell mediated event likely targeting transduced cells
 - Need for immunosuppression in clinical trials
 - Similar immune-mediated toxicity with AAV trials for lipoprotein lipase deficiency (Kidney), alzheimers (brain)
- Need better understanding of ways to predict these responses

pharmaceutical development group, inc.

*Hasbrouck and High, Gene Therapy (2008) 15, 870–875

CBER - Vaccines

Vaccines – General Preclinical Principles

- FDA follows World Health Organization (WHO) vaccine guidelines harmonized globally
 - WHO Guidelines on nonclinical evaluation of vaccines, WHO Technical Report Series, No. 927, 2005
- FDA has their own guidances as well:
 - e.g., Guidance for Industry: General Principles for the Development of Vaccines to Protect Against Global Infectious Diseases, 2011
- General Principles:
 - Clinical candidate (GMP), formulation, route of administration and frequency of administration should be used for animal studies
 - Animal models must mount a similar immune response to humans
 - No TK needed, but PD response should be fully characterized
 - Adjuvants and excipients tested as for drugs if no MAF

Vaccines – General Preclinical Principles

- Toxicity studies:
 - Usually a single species studied matched to efficacy species
 - Usually 1 dose level sufficient clinical dose (mg basis) or higher
 - Human dosing regimen followed where possible
 - Standard toxicity assessments conducted after each dose and after an off-dose period
 - Timing of assessments to correspond with peak Ab production
 - Evaluate injection-site reactions
- Reproductive Toxicity not needed for childhood vaccines
 - Needed if patient population includes women of childbearing potential
 - Only embryo-fetal and postnatal development study (no fertility)
 - Generally a single study with separate arms
 - Postnatal development only followed through weaning
- Generally no need for carcinogenicity, genotoxicity
- Safety Pharmacology only based on cause for concern

Conclusions

- FDA follows ICH Guidelines (or WHO Guidelines) when available
- Standard toxicity study packages are expected for small molecules and for biologics that fall under CDER
- Abbreviated packages are acceptable for cancer indications terminally ill patients
- CBER-regulated products decided on case-by-case basis depending on nature of the product and pharmacology
- Most important challenges for all biologics is identifying a pharmacologically-responsive species

Thank you for your attention.

• Questions ?

